skip to main content


Search for: All records

Creators/Authors contains: "Cheng, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parameter estimation with non-Gaussian stochastic fields is a common challenge in astrophysics and cosmology. In this paper, we advocate performing this task using the scattering transform, a statistical tool sharing ideas with convolutional neural networks (CNNs) but requiring neither training nor tuning. It generates a compact set of coefficients, which can be used as robust summary statistics for non-Gaussian information. It is especially suited for fields presenting localized structures and hierarchical clustering, such as the cosmological density field. To demonstrate its power, we apply this estimator to a cosmological parameter inference problem in the context of weak lensing. On simulated convergence maps with realistic noise, the scattering transform outperforms classic estimators and is on a par with the state-of-the-art CNN. It retains advantages of traditional statistical descriptors, has provable stability properties, allows to check for systematics, and importantly, the scattering coefficients are interpretable. It is a powerful and attractive estimator for observational cosmology and the study of physical fields in general. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The superτ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035cm−2·s−1or higher. The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025